Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Autoimmun ; 121: 102649, 2021 07.
Article in English | MEDLINE | ID: covidwho-1213324

ABSTRACT

Autoimmune and autoinflammatory rheumatic disorders (ARD) are treated with antimetabolites, calcineurin inhibitors and biologic agents either neutralizing cytokines [Tumor Necrosis Factor (TNF), Interleukin (IL)-1, IL-6, IL-17, B-cell activating factor] or being directed against B-cells (anti-CD-20), costimulatory molecules or JAK kinases. Similarly for the influenza or pneumococcal vaccines, there is limited data on the effectiveness of vaccination against SARS-CoV-2 infection and COVID-19 prevention for this susceptible patient population. Moreover, preliminary data from vaccinated organ transplanted, inflammatory bowel and connective tissue disease patients suggests only limited immunogenicity after the first vaccine dose, particularly in patients on immunosuppressive regimens. Herein a set of recommendations for the vaccination of immune suppressed patients with the SARS-CoV-2 vaccines is proposed aimed at achieving optimal vaccine benefit without interfering with disease activity status. Moreover, rare autoimmune adverse events related to vaccinations are discussed.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunosuppression Therapy , Rheumatic Diseases , SARS-CoV-2/immunology , Vaccination , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Cytokines/isolation & purification , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/therapeutic use , Rheumatic Diseases/immunology , Rheumatic Diseases/therapy
3.
Blood Purif ; 50(6): 921-924, 2021.
Article in English | MEDLINE | ID: covidwho-1030460

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus-2 may lead to high levels of expression of inflammatory cytokines. Medium cut-off (MCO) membranes may make greater clearances for large-middle molecules (including cytokines) than low-flux (LF) membranes. In this study, we aimed to evaluate the impact of MCO membranes on outcome of COVID-19 patients on hemodialysis (HD). METHODS: Sixty COVID-19 HD patients were included in this study. The patients were categorized into 2 groups regarding type of HD membranes. Clinical data were taken from medical records. RESULTS: Initial crp and ferritin levels, which are surragates of cytokine storm and severity of disease in COVID-19, were significantly higher in MCO membrane group compared to LF group (p = 0.037 and 0.000, respectively). Although there were more patients with severe disease in MCO group, there were no significant differences regarding need for intensive care unit and death. CONCLUSION: It may be an option to use MCO membranes in HD patients with COVID-19 in order to reduce cytokine levels and prevent cytokine storm.


Subject(s)
COVID-19/therapy , Membranes, Artificial , Renal Dialysis/instrumentation , Aged , COVID-19/complications , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Cytokines/isolation & purification , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome
5.
Trials ; 21(1): 577, 2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-613556

ABSTRACT

OBJECTIVES: Approximately 8 - 10 % of COVID-19 patients present with a serious clinical course and need for hospitalization, 8% of hospitalized patients need ICU-treatment. Currently, no causal therapy is available and treatment is purely supportive. The main reason for death in critically ill patients is acute respiratory failure. However, in a number of patients a severe hyperinflammatory response with excessively elevated proinflammatory cytokines causes vasoplegic shock resistant to vasopressor therapy. A new polystyrene-based hemoadsorber (CytoSorb®, Cytosorbents Inc., New Jersey, USA) has been shown to adsorb effectively cytokines and other middle molecular weight toxins this way reducing their blood concentrations. This has been routinely used in clinical practice in the EU for other conditions where a cytokine storm occurs and an observational study has just been completed on COVID-19 patients. We hypothesized that the extracorporeal elimination of cytokines in critically ill COVID-19 patients with suspected hyperinflammation and shock may stabilize hemodynamics and improve outcome. The primary endpoint is time until resolution of vasoplegic shock, which is a well implemented, clinically relevant endpoint in critical care studies. TRIAL DESIGN: Phase IIb, multicenter, prospective, open-label, randomized, 1:1 parallel group pilot study comparing the additional use of "CytoSorb" to standard of care without "CytoSorb". PARTICIPANTS: Patients are recruited from the Intensive Care Units (ICUs) of 7 participating centers in Germany (approximately 10 ICUs). All patients aged 18- 80 with positive polymerase chain reaction (PCR) test for SARS-CoV-2, a C-reactive protein (CRP) ≥ 100 mg/l, a Procalcitonin (PCT) < 2 ng/l, and suspected cytokine storm defined via a vasoplegic shock (Norepinephrine > 0.2 µg/min/kg to achieve a Mean Arterial Pressure ≥ 65mmHg). Patients are included irrespective of indication for renal replacement therapy. Suspected or proven bacterial cause for vasoplegic shock is a contraindication. INTERVENTION AND COMPARATOR: Within 24 hours after meeting the inclusion criteria patients will be randomized to receive either standard of care or standard of care and additional "CytoSorb" therapy via a shaldon catheter for 3-7 days. Filter exchange is done every 24 hours. If patients receive antibiotics, an additional dose of antibiotics is administered after each change of "CytoSorb" filter in order to prevent underdosing due to "CytoSorb" treatment. MAIN OUTCOMES: Primary outcome is time to resolution of vasoplegic shock (defined as no need for vasopressors for at least 8 hours in order to sustain a MAP ≥ 65mmHg) in days. Secondary outcomes are 7 day mortality after fulfilling the inclusion criteria, mortality until hospital discharge, Interleukin-6 (IL-6) measurement on day 1 and 3, need for mechanical ventilation, duration of mechanical ventilation, duration of ICU-stay, catecholamine dose on day 1/2/3 after start of "CytoSorb" and acute kidney injury. RANDOMIZATION: An electronic randomization will be performed using the study software secuTrial® administered by the Clinical Study Center (CSC) of the Charité - Universitätsmedizin Berlin, Germany. Randomization is done in blocks by 4 stratified by including center. BLINDING (MASKING): The trial will be non-blinded for the clinicians and patients. The statistician will receive a blinded data set, so that all analyses will be conducted blinded. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): As this is a pilot study with the goal to examine the feasibility of the study design as well as the intervention effect, no formal sample size calculation was conducted. A total number of approximately 80-100 patients is planned (40-50 patients per group). Safety assessment is done after the inclusion of each 10 patients per randomization group. TRIAL STATUS: Please see the study protocol version from April 24 2020. Recruitment of patients is still pending. TRIAL REGISTRATION: The study was registered on April 27 2020 in the German Registry of Clinical Trials (DRKS) under the number DRKS00021447. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Cytokines/blood , Hemadsorption , Pneumonia, Viral/immunology , Randomized Controlled Trials as Topic , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Critical Illness , Cytokines/isolation & purification , Humans , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2 , Young Adult
6.
Artif Organs ; 44(9): 918-925, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-591655

ABSTRACT

The aim of this document was to inform the scientific community of sparse preliminary results regarding advanced supportive therapies and technology-driven systems in addition to highlighting the benefits and possibilities of performing concise research during challenging times. Advanced organ support for lung and heart offers the possibility to buy the time needed for recovery. However, remaining a bridging strategy, extracorporeal life support cannot act as the ultimate treatment for the underlying COVID-19 disease. Appropriate patient selection criteria addressed by experts and scientific organizations, such as Extracorporeal Life Support Organization and World Health Organization, may provide significant help in the difficult decision-making and to reduce mortality in patients with profound respiratory and/or cardiac failure due to COVID-19. Severe, systemic cytokine-mediated inflammation associated with the SARS-CoV-2 has also been described. Effects of crosstalk between coagulation and inflammatory pathways appear to significantly affect disease progression and lead to poor outcomes. Multiple therapeutic strategies, including antibody therapies (such as Tocilizumab, Sarilumab, Siltuximab), therapeutic plasma exchange (TPE), and blood purification techniques for direct removal of cytokines, including filtration, dialysis (diffusion), and adsorption are available. Further, we believe, that research should be facilitated and promoted, particularly under the guidance of recognized scientific societies or expert-based multicenter investigation, with rapid communication of critical and relevant information to enhance better appraisal of patient profiles, complications, and treatment modalities.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Cytokines/blood , Cytokines/isolation & purification , Extracorporeal Membrane Oxygenation , Humans , Pandemics , Plasma Exchange , Pneumonia, Viral/blood , SARS-CoV-2 , Sorption Detoxification , COVID-19 Drug Treatment
7.
Blood Purif ; 50(1): 17-27, 2021.
Article in English | MEDLINE | ID: covidwho-381787

ABSTRACT

Critically ill COVID-19 patients are generally admitted to the ICU for respiratory insufficiency which can evolve into a multiple-organ dysfunction syndrome requiring extracorporeal organ support. Ongoing advances in technology and science and progress in information technology support the development of integrated multi-organ support platforms for personalized treatment according to the changing needs of the patient. Based on pathophysiological derangements observed in COVID-19 patients, a rationale emerges for sequential extracorporeal therapies designed to remove inflammatory mediators and support different organ systems. In the absence of vaccines or direct therapy for COVID-19, extracorporeal therapies could represent an option to prevent organ failure and improve survival. The enormous demand in care for COVID-19 patients requires an immediate response from the scientific community. Thus, a detailed review of the available technology is provided by experts followed by a series of recommendation based on current experience and opinions, while waiting for generation of robust evidence from trials.


Subject(s)
COVID-19/therapy , Continuous Renal Replacement Therapy/methods , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Hemoperfusion/methods , Multiple Organ Failure/therapy , COVID-19/blood , COVID-19/complications , Continuous Renal Replacement Therapy/instrumentation , Critical Illness/epidemiology , Cytokines/blood , Cytokines/isolation & purification , Equipment Design , Extracorporeal Membrane Oxygenation/instrumentation , Hemoperfusion/instrumentation , Humans , Multiple Organ Failure/blood , Multiple Organ Failure/etiology
SELECTION OF CITATIONS
SEARCH DETAIL